Let
M be the foot of the perpendicular drawn from point
A(3,2,1) to the given line.
Let x−7−2=y−72=z−63=k
∴ x=7−2k,y=7+2k,z=6+3k are the co-ordinates of any point on the given line
⇒ M=(7,−2k,7+2k,6+3k)
The d.r.s of AM are 7−2k−3,7+2k−2,6+3k−1
i.e. 4−2k,5+2k,5+3k
The d.r.s of the given lines are −2,2,3
Since, AM perpendicular to the given line
(4−2k)(−2)+(5+2k)(2)+(5+3k)(3)=0
⇒ −8+4k+10+4k+15+9k=0
⇒ 17k+17=0
⇒ k=−1
The co-ordinates of the foot of the perpendicular
i.e. M=(9,5,3)
The length of the perpendicular distance
⇒ AM=√(9−3)2+(5−2)2+(3−1)2
=√36+9+4
=√49
=7units