(i) Given : limx→1[x2+1x+100]
Substituting x=1
=12+11+100
=1+1101
=2101
∴limx→1[x2+1x+100]=2101
(ii) Given : limx→2[x3−4x2+4xx2−4]
Substituting the given value,
limx→2[x3−4x2+4xx2−4]=23−4×22+4×222−4
=8−16+84−4
=00
Since it is in 00 form, we have to simplify it.
⇒limx→2[x3−4x2+4xx2−4]
=limx→2x(x2−4x+4)x2−(2)2
=limx→2x(x2+22−2⋅2⋅x)(x−2)(x+2)
=limx→2x(x−2)2(x−2)(x+2) (∵x≠2)
=limx→2x(x−2)x+2
Substituing x=2
=2(2−2)2+2=2(0)4=04=0
(iii) Given : limx→2[x2−4x3−4x2+4x]
Substituting the given value,
limx→2[x2−4x3−4x2+4x]=22−423−4×22+4×2
=4−48−16+8
=00
Since it is in 00 form, we have to simplify it.
⇒limx→2[x2−4x3−4x2+4x]
=limx→2[x2−(2)2x(x2−4x+4)]
=limx→2[(x−2)(x+2)x(x2+22−2⋅2⋅x)]
=limx→2[(x−2)(x+2)x(x−2)2]
=limx→2[x+2x(x−2)] (∵x≠2)
Substituing x=2
=2+22(2−2)=42(0)=40
=∞
Which is not defined.
(iv) Given : limx→2[x3−2x2x2−5x+6]
Substituting the given value,
limx→2[x3−2x2x2−5x+6]=23−2×2222−5×2+6
=8−84−10+6
=00
Since it is in 00 form, we have to simplify it.
⇒limx→2[x3−2x2x2−5x+6]
=limx→2x2(x−2)x2−3x−2x+6
=limx→2(x2(x−2)x(x−3)−2(x−3))
=limx→2(x2(x−2)(x−2)(x−3))
=limx→2(x2x−3) (∵x≠2)
Substituting x=2
=(2)22−3
=4−1
=−4
∴limx→2[x3−2x2x2−5x+6]=−4
(v) Given : limx→1[x−2x2−x−1x3−3x2+2x]
=limx→1[x−2x(x−1)−1x(x2−3x+2)]
=limx→1[x−2x(x−1)−1x(x(x−2)−1(x−2))]
=limx→1[x−2x(x−1)−1x(x−1)(x−2)]
=limx→1[(x−2)(x−2)−1x(x−1)(x−2)]
=limx→1[(x−2)2−12x(x−1)(x−2)]
=limx→1[(x−2−1)(x−2+1)x(x−1)(x−2)]
=limx→1[(x−3)(x−1)x(x−1)(x−2)] (∵x≠1)
=limx→1[x−3x(x−2)]
Substituing x=1
=1−31(1−2)
=−21×−1
=2
∴limx→1[x−2x2−x−1x3−3x2+2x]=2