wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Find the local maxima and local minima, if any of the following function. Also, find the local maximum and the local minimum values, as the case may be as follows.

f(x)=sinxcosx,0<x<2π

Open in App
Solution

Given function is, f(x)=sinxcosx, 0<x<2π
f(x)=cosx+sinx and f"(x)=sinx+cosx
For maxima put f'(x)=0
cosx+sinx=0sinxcosx=1, tanx=1x=ππ4,2ππ4x=3π4,7π4,xϵ(2,2π)
The points at which extremum may occur are 3π4 and 7π4
At x=π4,f"(3π4)=sin3π4+cos3π4=sin(ππ4)+cos(ππ4)
[sin(πθ)=sinθ and cos(πθ)=cosθ]
=sinπ4cosπ4=1212=2<0
x=3π4 is a point of maxima.
Maxima value =f(3π4)=sin3π4cos3π4
=sin(ππ4)cos(ππ4)=sinπ4cosπ4=12+12=22=2
At x=7π4,f"(7π4)+cos7π4=sin(2ππ4)+cos(2ππ4)
[sin(2πθ)=sinθ and cos(2πθ)=cosθ]=sinπ4+cosπ4=12+12=2>0
x=7π4 is a point of minima.
Minimum value
f(7π4)=sin7π4cos7π4=sin(2ππ4)cos(2ππ4)=sinπ4cosπ4=1212=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon