Find the locus of point of intersection of perpendicular tangents to the hyperbola x216−y29=1
x2 + y2 = 7
Let p(h,k) be the point of intersection of two perpendicular tangents.
Equation of pair of tangents is SS1=T2
S=x216−y29−1
S1=h216−y29−1
T=hx16−ky9−1
SS1=T2
⇒(x216−y29−1)(h216−k29−1)=(hx16−ky9−1)2
⇒x216(h216−k29−1)−y29(h216−k29−1)−(h216−k29−1)
=h2x2162+k2y2162+1−2hkxy16×9+2ky9+2hx16
x216(−k29−1)−y29(h216−1)+hkxy72−2kg9−hx8−(h216−k29)=0 ......(i)
Since, equation (i), represents two perpendicular lines
coefficient of x2+coefficient of y2=0
116(−k29−1)−19(h216−1)=0
−k2−9−(h2−16)=0
−k2−9−h2+16=0
k2+h2−7=0
k2+h2=7
For required locus replacing h=x & k=y
⇒y2+x2=7 or x2+y2=7