Find the magnitude, in radians and degrees, of the interior angle of a regular.
(i) pentagon
(ii) octagon
(iii) heptagon
(iv) duodecagon
General formula for interior angles of polygon with n side =(2n−4n)×90∘
(i) Pentagon has 5 sides
∴ magnitude of the interior angle
=2×5−45×90∘
=65×90=180∘
Now,
∵ 1c=180π
And each angle of Pentagon
=2×5−45×π2
=(3π5)c ∴ 108∘, (3π5)∘
(ii) Octagon
n = 8
∴ each angle =2×8−48×90∘
=135∘
Again,
each angle =2×8−48×π2
=(3π4)c
∴ 135∘(3π4)c
(iii) Heptagon
n = 7
each angle =2×7−47×90∘
=107×90∘=900∘7
=128∘ 34′ 17′′
Again,
each angle =2×7−47×π2
=107×π2
=(5π7)c ∴ 128∘ 34′ 17′′, (5π7)c
(iv) Duodecagon
n = 12
each angle =2×12−412×90∘
=2012×90∘
=150∘
Again,
each angle =2×12−412=π2
=2012×π2
=(5π6)c
∴ 150∘, (5π6)c