Let f(θ)=12sinθ−5cosθ
We know that
−√(12)2+(−5)2≤f(θ)≤√(12)2+(−5)2
⇒−√144+25≤f(θ)≤√144+25⇒−√169≤f(θ)≤√169⇒−13≤f(θ)≤13
Hence, minimum and maximum values of 12sinθ−5cosθ are -13 and 13 respectively.
(ii) Let f(θ)=12cosθ+5cosθ+4
We know that
−√(12)2+(5)2≤12cosθ+5sinθ≤√(12)2+(−5)2
⇒−√144+25≤12cosθ+5sinθ≤√144+25⇒−√169≤12cosθ+5sinθ≤√169
⇒−13≤12cosθ+5sinθ≤13⇒−13+4≤13+4
⇒−9≤12cosθ+5sinθ+4≤17⇒−9≤f(0)≤17
Hence, minimum and maximum values of 12 cos \theta+5 sin \theta +4 are -9 and 17 respectively.
(iii) Let f(θ)=5cosθ+3sin(π6−θ)+4
Then, f(θ)=5cosθ+3(sinπ6−cosπ6sinθ)+4
=5cosθ+3[12cosθ−√32sinθ]+4−5cosθ+32cosθ−√32sinθ+4
=(5+32)cosθ−3√32sinθ+4=132cosθ−3√32sinθ+4=132cosθ−(−3√32)sinθ+4
We know that,
−√(132)2+(−3√32)2≤132cosθ−(−3√32)sinθ≤√(132)2+(−3√32)2
⇒−√1694+274≤132cosθ−(−3√32sinθ≤√1694+274)
⇒−√1964≤132cosθ−(−3√32sinθ)≤√1964⇒−142≤132cosθ−3√32sinθ≤142
⇒−7≤132cosθ−3√32sinθ≤7
⇒−7+4≤132cosθ−3√32sinθ+4≤7+4
⇒−3≤132cosθ−(−3√32)sinθ+4≤11⇒−3≤f(θ)≤11
Hence, -3 and 11 are respectively the minimum and the maximum values of 5cosθ+3sin(π4−θ)+4. (iv) Let f(θ)=sinθ−cosθ+1 Then,
f(θ)=sinθ+(−1)cosθ+1
=(−1)cosθ+sinθ+1
We know that
−√(−1)2+(1)2≤−cosθ+sinθ≤√(−1)2+(1)2
⇒−√1+1≤−cosθ+sinθ≤√1+1
⇒−√2≤−cosθ+sinθ≤√2
⇒−√2+1≤−cosθ+sinθ+1≤√2+1⇒1−√2≤f(θ)≤1+√2
Hence, minimum and maximum values of sinθ−cosθ+1 are 1−√2 and 1+√2 respectively.