wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12sinθ5cosθ
(ii) 12cosθ+5sinθ+4
(iii) 5cosθ+3sin(π6θ)+4
(iv) sinθcosθ+1

Open in App
Solution

Let f(θ)=12sinθ5cosθ
We know that
(12)2+(5)2f(θ)(12)2+(5)2
144+25f(θ)144+25169f(θ)16913f(θ)13
Hence, minimum and maximum values of 12sinθ5cosθ are -13 and 13 respectively.
(ii) Let f(θ)=12cosθ+5cosθ+4
We know that
(12)2+(5)212cosθ+5sinθ(12)2+(5)2
144+2512cosθ+5sinθ144+2516912cosθ+5sinθ169
1312cosθ+5sinθ1313+413+4
912cosθ+5sinθ+4179f(0)17
Hence, minimum and maximum values of 12 cos \theta+5 sin \theta +4 are -9 and 17 respectively.
(iii) Let f(θ)=5cosθ+3sin(π6θ)+4
Then, f(θ)=5cosθ+3(sinπ6cosπ6sinθ)+4
=5cosθ+3[12cosθ32sinθ]+45cosθ+32cosθ32sinθ+4
=(5+32)cosθ332sinθ+4=132cosθ332sinθ+4=132cosθ(332)sinθ+4
We know that,
(132)2+(332)2132cosθ(332)sinθ(132)2+(332)2
1694+274132cosθ(332sinθ1694+274)
1964132cosθ(332sinθ)1964142132cosθ332sinθ142
7132cosθ332sinθ7
7+4132cosθ332sinθ+47+4
3132cosθ(332)sinθ+4113f(θ)11
Hence, -3 and 11 are respectively the minimum and the maximum values of 5cosθ+3sin(π4θ)+4. (iv) Let f(θ)=sinθcosθ+1 Then,
f(θ)=sinθ+(1)cosθ+1
=(1)cosθ+sinθ+1
We know that
(1)2+(1)2cosθ+sinθ(1)2+(1)2
1+1cosθ+sinθ1+1
2cosθ+sinθ2
2+1cosθ+sinθ+12+112f(θ)1+2
Hence, minimum and maximum values of sinθcosθ+1 are 12 and 1+2 respectively.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon