wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum and minimum values of each of the following trigonometrical expressions:

(i) 12 sin θ − 5 cos θ
(ii) 12 cos θ + 5 sin θ + 4
(iii) 5 cos θ+3 sin π6-θ+4
(iv) sin θ − cos θ + 1

Open in App
Solution

(i)
Let fθ =12 sin θ - 5 cosθWe know that-122+(-5)212 sin θ - 5 cosθ122+(-5)2-144+2512 sin θ - 5 cosθ144+25-1312 sinθ - 5 cosθ13Hence the maximum and minumun values of fθ are 13 and -13, respectively .

(ii)
Let f(θ) = 12 cosθ +5 sinθ +4We know that-122+5212 cosθ +5 sinθ 122+52 for all θ-16912 cosθ +5 sinθ 169-1312 cosθ +5 sinθ 13-912 cosθ +5 sinθ +417Hence, the maximum and minimum vaues of fθ are 17 and -9, respectively.

(iii)
Let fθ=5 cosθ +3 sinπ6-θ +4Now fθ = 5cosθ+3sin30°cosθ -cos30°sinθ+4 =5cosθ +32cosθ -332sinθ +4 =132cosθ-332sinθ +4We know that-1322+-3322132cosθ-332sinθ1322+-3322 for all θTherefore,-169+274 132cosθ-332sinθ 169+274-142+4132cosθ-332sinθ +4142+4-3132cosθ-332sinθ +411Hence, maximum and minimun values of fθ are 11 and -3, respectively .

(iv)
Let fθ =sinθ-cosθ+1We know that-12+(-1)2sinθ-cosθ12+(-1)2 for all θ-2sinθ-cosθ2-2+1sinθ-cosθ +12+1Hence maximum and minimum values of f(θ) are 1+2 and 1-2 , respectively .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphs of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon