Letthelengthofrectanglebex,thenwidth=(176/2−x)=(88−x)∴Area=A=x(88−x)=88x−x2norforareatobemaximum,(dAdx)=088−2x=0orx=88/2=44∴maximumarea=x(88−x)=44(88−44)=442=1936squnit
Perimeter of a rectangle is 24. Find the maximum area such a rectangle can have