wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum value of cos3x+cos3(120x)+cos3(120+x).

Open in App
Solution

Given: cos3x+cos3(120x)+cos3(120+x)= cos3x+3cosx4+cos(3603x)+3cos(120x)4+cos(360+3x)+3 cos(120+x4
[Since, cos3x=cos3x+3cosx4]
= 14(cos3x+3cosx+cos3x+3cos(120x)+cos3x+3cos(120+x)
= 34(cos3x+cosx+cos(120x)+cos(120+x)
= 34(cos3x+cosx+2cos120cosx)
=34(cos3x+cosx+2×(12cosx))
= 34(2cos2xcosxcosx)
=34(cos3x+cosxcosx)
cos3x+cos3(120x)+cos3(120+x)= 34cos3x and
Maximum value of cos3x=1.
So, maximum value of cos3x+cos3(120x)+cos3(120+x)= 34×1=34


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon