Find the maximum value of cos3x+cos3(120−x)+cos3(120+x).
Given: cos3x+cos3(120−x)+cos3(120+x)= cos3x+3cosx4+cos(360−3x)+3cos(120−x)4+cos(360+3x)+3 cos(120+x4
[Since, cos3x=cos3x+3cosx4]
= 14(cos3x+3cosx+cos3x+3cos(120−x)+cos3x+3cos(120+x)
= 34(cos3x+cosx+cos(120−x)+cos(120+x)
= 34(cos3x+cosx+2cos120cosx)
=34(cos3x+cosx+2×(−12cosx))
= 34(2cos2xcosx−cosx)
=34(cos3x+cosx−cosx)
∴cos3x+cos3(120−x)+cos3(120+x)= 34cos3x and
Maximum value of cos3x=1.
So, maximum value of cos3x+cos3(120−x)+cos3(120+x)= 34×1=34