Find the mean deviation from the mean and from median of the following distribution :
Marks0−1010−2020−3030−4040−50No. of students5815166
Computation of M.D.from Median
MarksStudentsxiCum.Freq.|di|=|xi−28|fidifixi|xi−27|fi|xi−27|0−1055523115252211010−208151313104120129620−3015252834537523030−401635447112560812840−50645501710227018108∑5i=1fidi=478T=1350∑8i=1fi|xi−27|=472
N=50,N2=25
The cumulative frequency just greater than N2=25 is 28 and the corresponding class is 20 - 30
Thus the median class is 20 - 30
Using formula
∴l=20, F=13, f=15, h=10
Median =l+N2−Ff×h
Substituting the values
Median =20+25−1315×10=20+8=28
Mean distribution on from the median =∑5i=1fi|di|N=47850=9.56
Mean (¯X)=∑5i=1fixiN=135050=27
M.D. from the mean =150×∑5i=1fi|xi−27|=47250=9.44
M.D. from the mean are 9.56 and 9.44 respectively.