Find the measure of ∠DAE in the figure below.
15∘
∠ABC=90∘ [Angle of a square]
Also, ∠EBC=60∘ [Angle of an equilateral triangle]
So, ∠ABE=∠ABC−∠EBC=90∘−60∘=30∘
In ΔABE, BE = AB [Given]
That means ΔABE is isosceles.
Let ∠BEA=∠BAE=x
x+x+∠ABE=180∘ [Angle sum property]
2x=180∘−30∘=150∘
x=75∘
So, ∠BEA=∠BAE=75∘
Now, ∠DAE=∠DAB−∠BAE=90∘−75∘=15∘