wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the minimum distance between the lines whose vector equations are:
r=^i+^j+l(2^i^j+^k) and 2^i+^j^k+m(3^i5^j+2^k)

Open in App
Solution

r=^i+^j+l(2^i^j+^k)=a1+λb1 (Let)
r=2^i+^j^k+m(3^i5^j+2^k)=a2+5b2 (Let)
Now, b2×b2=∣ ∣ ∣^i^j^k211352∣ ∣ ∣
=^i(2+5)^j(43)+^k(10+3)=3^i^j7^k
b2×b2=(3)2+(1)2+()72=59
a2a1=2^i+^j^k^i^j=^i^k
Shortest distance or minimum distance =∣ ∣ ∣(b1×b2)(a2a1)b1×b2∣ ∣ ∣
=3+759
Minimum distance=1059

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Shortest Distance between Two Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon