→r=^i+^j+l(2^i−^j+^k)=→a1+λ→b1 (Let)
→r=2^i+^j−^k+m(3^i−5^j+2^k)=→a2+5→b2 (Let)
Now, →b2×→b2=∣∣
∣
∣∣^i^j^k2−113−52∣∣
∣
∣∣
=^i(−2+5)−^j(4−3)+^k(−10+3)=−3^i−^j−7^k
∣∣→b2×→b2∣∣=√(3)2+(−1)2+(−)72=√59
→a2−→a1=2^i+^j−^k−^i−^j=^i−^k
Shortest distance or minimum distance =∣∣
∣
∣∣(→b1×→b2)(→a2−→a1)∣∣→b1×→b2∣∣∣∣
∣
∣∣
=∣∣∣3+7√59∣∣∣
Minimum distance=10√59