The correct option is B 0.8
For finding minimum value, we will first find critical points.
dydx=0
⇒dydx=10x−2=0
⇒10x=2
⇒x=15
Further, d2ydx2=10
Since d2yd2x is positive for all values, y(x=15) is minimum value.
⇒y(x=15)=5(15)2−2(15)+1
=15−25+55=45=0.8