x2−3x+5=0a=2,b=−3,c=5
Discriminant, D=b2−4ac=9−40=−31
Since D<0, the roots are imaginary for the given equation.
ii)
3x2−4√3x+4=0a=3,b=−4√3,c=4
Discriminant, D=b2−4ac=48−48=0
Since D=0, the roots are real and equal for the given equation.
3x2−4√3x+4=0a=3,b=−4√3,c=4x=[−b±√b2−4ac]2ax=4√36=2√3
iii)
2x2−6x+3=0a=2,b=−6,c=3
Discriminant, D= b2−4ac=36−24=12
Since D>0, roots are real but not equal.
x=[−b±√b2−4ac]2ax=6±√124x=6±2√34x=3±√32