Given equation
x4+x2+1=0
⇒(x2)2+x2+1=0
Comparing that
ax2+bx+c=0 and we get,
Then,
a=1,b=1,c=1
Using quadratic formula,
X=−b±√b2−4ac2a
But given X=x2 then
x2=−b±√b2−4ac2a
⇒x2=−1±√12−4×1×12×1
⇒x2=−1±√1−42
⇒x2=−1±√−32
⇒x2=−1±√−1×√32
∴0 real solutions