The correct option is A 4.43
Three solutions of equal volume are mixed.
Let's consider, initial volume of each solution= 1L
we know, pH=−log[H+]
For Ist solution pH=4⇒4=−log[H+]⇒[H+]=antilog(4)=10−4 molL−1
For II nd solution pH=−log[H+]
For IInd solution pH=5⇒5=−log[H+]⇒[H+]=antilog(5)=10−5 molL−1
For III rd solution pH=−log[H+]
For Ist solution pH=6⇒6=−log[H+]⇒[H+]=antilog(6)=10−6 molL−1
But, as the volume of each solution is 1 litre so,
using the formula,
Moles=Molarity×Volume
For Ist solution Moles of H+=10−4 molL−1×1L=10−4 mol
For II nd solution Moles of H+=10−5 molL−1×1L=10−5 mol
For III rd solution Moles of H+=10−6 molL−1×1L=10−6 mol
After the mixing is done,
Total volume = 3 L
Total moles (=10−4+10−5+10−6)
=111×10−6 mol
So, for :
For final solution [H+]=111×10−63mol L−1
=37×10−6mol L−1
=3.7×10−5mol L−1
hence, the H+ ion concentration of the mixture is 3.7×10−5 mol L−1
pH=−log(3.7×10−5)
pH=5−log(3.7)
pH=(5−0.57)
pH=4.43