x2+2x−3)x2+1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x4+2x3−2x2+x−1
x4(−)+(−)2x3−(+)3x2
x2+x−1$
x2(−)++(−)2x−(+)3
−x+2
Thus, r(x)=−x+2⇒{−r(x)}=x−2
Hence, we should add (x−2) to P(x), so that the resulting polynomial is exactly divisible by g(x).