1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Solving Inequalities
Find the poss...
Question
Find the possible values
k
can take for the given inequality.
2
(
4
k
+
1
)
3
≥
k
(
6
+
5
)
−
3
2
A
k
≤
−
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
k
≥
−
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
k
≤
13
17
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
k
≥
13
17
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
k
≤
13
17
Given,
2
(
4
k
+
1
)
3
≥
k
(
6
+
5
)
−
3
2
⇒
8
k
+
2
3
≥
11
k
−
3
2
⇒
8
k
3
+
2
3
≥
11
k
2
−
3
2
Add
−
11
k
2
and
−
2
3
both sides, we get
8
k
3
+
2
3
−
11
k
2
−
2
3
≥
11
k
2
−
3
2
−
11
k
2
−
2
3
⇒
8
k
3
−
11
k
2
≥
−
3
2
−
2
3
⇒
16
k
−
33
k
6
≥
−
9
−
4
6
⇒
−
17
k
6
≥
−
13
6
⇒
k
≤
13
17
Suggest Corrections
1
Similar questions
Q.
17
−
2
k
k
−
5
=
−
3
Find the value of k.
Q.
A random variable
′
X
′
has the following probability distribution:
X
1
2
3
4
5
6
7
P
(
X
)
k
−
1
3
k
k
3
k
3
k
2
k
2
k
2
+
k
Then the value of
k
is
Q.
Find the value of
k
1
and
k
2
for which
→
V
can be represented as
→
V
=
k
1
→
A
+
k
2
→
B
. Where,
→
V
=
2
i
−
j
,
→
A
=
3
i
−
2
j
and
→
B
=
3
i
+
3
j
.