The correct option is
A {π}Given function is, f(x)=cos−1[x2−12]+sin−1[x2+12]
For this function to be defined −1≤[x2+12]≤1 and −1≤[x2−12]≤1
or −1≤x2+12<2 and −1≤x2−12<2
or −32≤x2<32 and −12≤x2<52 but x2≥0
Taking intersection of above, domain of f(x) is x2∈[0,32)
Now taking different cases,
case 1. x2∈[0,12)
f(x)=cos−1[x2−12]+sin−1[x2+12]=cos−1(−1)+sin−1(0)=π−0=π
case 2. x2∈[12,32)
f(x)=cos−1[x2+12]+sin−1[x2−12]=cos−1(0)+sin−1(1)=π2+π2=π
Hence range of f(x) is only singleton set {π}