The correct option is
A [π3,π2]Consider the equation
x2+x+1=0It does not have any real roots as
b2−4ac<0Since
b2−4ac<0,
x2+x+1>0 for all
xϵR..(i)
sin−1(√x2+x+1)ϵ(0,π2)...(i)
sin−1θϵ[−π2,π2]
Hence θϵ[−1,1]
Since x2+x+1>0
Hence, 0<x2+x+1<1
x2+x+1<1 implies
x2+x<0
x(x+1)<0
x>−1 and x<0
∴xϵ(−1,0)...(ii)
Now f(x)=x2+x+1
f′(x)=2x+1=0
f′(x)=x=−12
Hence f(x) attains a local minimum at x=−12.
Now sin−1(√x2+x+1)x=−12
=sin−1(√14−12+1)
=sin−1(√34)
=sin−1(√32)
=π3...(iii)
Hence from i ii and iii
yϵ[π3,π2]