(i) f(x)=1−x−x2 has maximum value and it is 4ac−b24a=−4−1−4=54
Range of f(x)=(−∞,54]
(ii) f(x)=3x+7x−8
Let, y=3x+7x−8⟹xy−8y=3x+7
⟹x(y−3)=8y+7⟹x=8y+7y−3
Range of f(x)=R−{3}
(iii)f(x)=x2+2x+8 has minimum value and it is 4ac−b24a=32−44=284=7
Range of f(x)=[7,∞)
(iv) f(x)=3x+7x−8
Let, y=4x−7x−3⟹xy−3y=4x−7
⟹x(y−4)=3y−7⟹x=3y−7y−4
Range of f(x)=R−{4}