CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the real solution of

tan1x(x+1)+sin1x2+x+1=x2.

Open in App
Solution

We have, tan1x(x+1)+sin1x2+x+1=x2 (i)

Let sin1x+x+1=θ x2+x+1

sin θ=x2+x+11 x2x

tan θ=x2+x+1x2x [ tan θ=sin θcos θ] θ=tan1x2+x+1x2x=sin1x2+x+1

On putting the value of θ in Eq. (i), we get

tan1x(x+1)+tan1x2+x+1x2x=x2

We know that, tan1x+tan1y=tan1(x+y1xy)xy<1

tan1x(x+1)+x2+x+1x2x1x(x+1).x2+x+1x2x=π2 tan1⎢ ⎢ ⎢x2+x+x2+x+11(x2+x)1(x2+x).(x2+x+1)1(x2+x)⎥ ⎥ ⎥=π2 x2+x+1(x2+x+1)[1(x2+x+1)](x2+x)=tanπ2=10

[1(x2+x+1)](x2+x)=0 (x2+x+1)=1 or x2+x=0 x2x1=1 or x(x+1)=0 x2+x+2=0 or x(x+1)=0 x=1±14×22 x=0 or x=1

For real solution, we have x = 0, -1.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon