Given,
(i)
(2+3i)x2−(3−2i)y=2x−3y+5i
(2x2−3y)+(3x2+2y)i=2x−3y+5i
[2x2−3y=2x−3y3x2+2y=5]
solving the above 2 equations, we get,
[2x2−3y=2x−3y3x2+2y=5]⇒(x=0,y=52x=1,y=1)
(ii)
4x2+3xy+(2xy−3x2)i=4y2−x22+(3xy−2y2)i
8x2+6xy+2i(2xy−3x2)=8y2−x2+2i(3xy−2y2)
[8x2+6xy=8y2−x24xy−6x2=6xy−4y2]
solving the above 2 quadratic equations, we get,
[8x2+6xy=8y2−x24xy−6x2=6xy−4y2]⇒(y=0,x=0)