(x+iy)(2−3i)=4+i
2x−3ix+2iy+3y=4+i
(2x+3y)+i(2y−3x)=4+i
Comparing both sides of the above equation,
2x+3y=4 (1)
And,
2y−3x=1 (2)
From equation (1) and (2), by elimination method,
x=513 and
y=1413
Find the real values of x and y, if
(i) (x+i y)(2−3i)=4+i(ii) (3x−2i y)(2+i)2=10(1+i)(iii) (1+i)x−2i3+i+(2−3i)y+i3−i=i(iv) (1+i)(x+i y)=2−5i