Finding dydx
Let y=x3logx
Differentiating both sides w.r.t. x we get
dydx=d(x3logx)dx
Using Product Rule, (uv)′=u′v+v′u
dydx=d(x3)dx.logx+d(logx)dx.x3
⇒dydx=3x2logx+1x.x3
⇒dydx=3x2logx+x2⋯(i)
Finding d2ydx2
Again, differentiating both sides of (i) w.r.t. x, we get
ddx(dydx)=d(3x2logx+x2)dx
⇒d2ydx2=d(3x2logx)dx+d(x2)dx
⇒d2ydx2=3.d(x2.logx)dx+2x
Using Product Rule, (uv)′=u′v+v′u
⇒d2ydx2=3(d(x)2dx.log x+d(logx)dx.x2)+2x
⇒d2ydx2=3(2x logx+1x.x2)+2x
⇒d2ydx2=3(2x logx+x)+2x
⇒d2ydx2=6x logx+3x+2x
⇒d2ydx2=6x logx+5x
⇒d2ydx2=x(6 logx+5)