wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the shortest distance between the lines
(i) r=i^+2j^+k^+λi^-j^+k^ and, r=2i^-j^-k^+μ2i^+j^+2k^

(ii) x+17=y+1-6=z+11 and x-31=y-5-2=z-71

(iii) r=i^+2j^+3k^+λi^-3j^+2k^ and r=4i^+5j^+6k^+μ2i^+3j^+k^

(iv) r=6i^+2j^+2k^+λi^-2j^+2k^ and r=-4i^-k^+μ3i^-2j^-2k^

Open in App
Solution

(i) r=i^+2j^+k^+λi^-j^+k^ and r=2i^-j^-k^+μ2i^+j^+2k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get

a1=i^+2j^+k^a2=2i^-j^-k^b1=i^-j^+k^ b2=2i^+j^+2k^ a2- a1=i^-3j^-2k^and b1×b2=i^j^k^1-11212 =-3i^+3k^ b1×b2=-32+32 =9+9 =32and a2- a1.b1×b2=i^-3j^-2k^.-3i^+3k^ =-3-6 =-9

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2d=-932 =32


(ii) x+17=y+1-6=z+11 and x-31=y-5-2=z-71

Since the first line passes through the point (-1, -1, -1) and has direction ratios proportional to 7, -6, 1, its vector equation is
r=a1+λb1 Here,a1=-i^-j^-k^ b1=7i^-6j^+k^

Also, the second line passing through the point (3, 5, 7) has direction ratios proportional to 1,-2, 1.
Its vector equation is
r=a2+μb2 Here,a2=3i^+5j^+7k^ b2=i^-2j^+k^

Now,
a2- a1=4i^+6j^+8k^and b1×b2=i^j^k^7-611-21 =-4i^-6j^-8k^ b1×b2=-42+-62+-82 =16+36+64 =116and a2- a1.b1×b2=4i^+6j^+8k^.-4i^-6j^-8k^ =-16-36-64 =-116

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2d=-116116 =116 =229

(iii) r=i^+2j^+3k^+λi^-3j^+2k^ and r=4i^+5j^+6k^+μ2i^+3j^+k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get
a1=i^+2j^+3k^a2=4i^+5j^+6k^b1=i^-3j^+2k^ b2=2i^+3j^+k^ a2- a1=3i^+3j^+3k^and b1×b2=i^j^k^1-32231 =-9i^+3j^+9k^ b1×b2=-92+32+92 =81+9+81 =171and a2- a1.b1×b2=3i^+3j^+3k^.-9i^+3j^+9k^ =-27+9+27 =9

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by
d=a2- a1.b1×b2 b1×b2d=9171 =319

(iv) r=6i^+2j^+2k^+λi^-2j^+2k^ and r=-4i^-k^+μ3i^-2j^-2k^

Comparing the given equations with the equations r=a1+λb1 and r=a2+μb2, we get
a1=6i^+2j^+2k^a2=-4i^-k^b1=i^-2j^+2k^ b2=3i^-2j^-2k^ a2- a1=-10i^-2j^-3k^and b1×b2=i^j^k^1-223-2-2 =8i^+8j^+4k^ b1×b2=82+82+42 =64+64+16 =144 =12and a2- a1.b1×b2=-10i^-2j^-3k^.8i^+8j^+4k^ =-80-16-12 =-108

The shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by

d=a2- a1.b1×b2 b1×b2d=-10812 =9

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Triple Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon