Find the shortest distance between the lines whose vector equtions are
r=(1−t)^i+(t−2)^j+(2−2t)^k and r=(s+1)^i+(2s−1)^j−(2s+1)^k
Equation of the given lines of the form
r=(^i−2^j+3^k)+t(−^i+^j−2^k) and r=(^i−^j−^k)+s(^i+2^j−2^k)
Compare these with r=a1+tb1 and r=a2+sb2
a1=^i−2^j+3^k,b1=−^i+^j−2^k and a2=^i−^j−^kb2=^i+2^j−2^k
Now, a2−a1=(^i−^j−^k)−(^i−2^j+3^k)=^j−4^k
and b1×b2=∣∣
∣
∣∣^i^j^k−11−212−2∣∣
∣
∣∣=(−2+4)^i−(2+2)^j+(−2−1)^k
=2^i−4^j−3^k
⇒|b1×b2|=√(2)2+(−4)2+(−3)2=√4+16+9=√29
∴ Required shortest distance
d=∣∣(b1×b2).(a2−a1)|b1×b2|∣∣=|(2^i−4^j−3^k).(^j−4^k)|√29=|−4+12|√29=|−4+12|√29=8√29