Find the slope of the line z(1 - i) + z(1 + i) + 2 = 0
1
-1
2
-2
Let z = (x + i y)
(x + i y) (1 - i) + (x - i y) (1 + i) + 2 = 0
x + y + i(y - x) + (x + y) + i (x - y) + 2 = 0
2(x + y) + 2 = 0
x + y + 1 = 0
Slope = -1
Reflection of the complex number 2−i3+i in the straight line z(1+i) = ¯z(i−1) is
If | z1−2z22−z1¯¯¯¯z2| = 1, |z2| ≠ 1, then |z1| =
If z1=2−i, z2=−2+i, find (i) Re (z1z2z1) (ii) Im (1z1z2)