Find the solution of the integral I=∫sin2xsin4x+cos4xdx
Find the solution
I=∫sin2xsin4x+cos4xdx=∫2sinxcosxsin4x+cos4xdx∵sin2x=2sinxcosx
Multiplying numerator and denominator with sec4x we get
I=∫2sinxcosxsec4x(sin4x+cos4x)sec4xdx=∫2tanxsec2x1+tan4xdx∵cosx=1sec(x)andtanx=sinxcosx
Let tanx=t
∴dt=sec2(x)dx
I=∫2t1+t4dtt2=z⇒2tdt=dzI=∫dz1+z2=tan-1z+c[∵∫11+x2dx=tan-1x]=tan-1(t2)+c[∵t2=z]=tan-1(tan2x)+c[∵t=tanx]
Hence, the integral I=tan-1(tan2x)+c
(i) Find the integral: ∫dxx2−6x+13 (ii) Find the integral: ∫dx3x2+13x−10 (iii) Find the integral: ∫dx√5x2−2x