wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the solution of the integral I=sin2xsin4x+cos4xdx


Open in App
Solution

Find the solution

I=sin2xsin4x+cos4xdx=2sinxcosxsin4x+cos4xdxsin2x=2sinxcosx

Multiplying numerator and denominator with sec4x we get

I=2sinxcosxsec4x(sin4x+cos4x)sec4xdx=2tanxsec2x1+tan4xdxcosx=1sec(x)andtanx=sinxcosx

Let tanx=t

dt=sec2(x)dx

I=2t1+t4dtt2=z2tdt=dzI=dz1+z2=tan-1z+c[11+x2dx=tan-1x]=tan-1(t2)+c[t2=z]=tan-1(tan2x)+c[t=tanx]

Hence, the integral I=tan-1(tan2x)+c


flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon