Given, 3a2b−2b3a.
On squaring, we get,
=(3a2b−2b3a)2.
We know, (a−b)2=a2−2ab+b2.
Then,
=(3a2b)2−2(3a2b)(2b3a)+(2b3a)2
=9a24b2−2+4b29a2.
Therefore, option D is correct.
Factorise:
9a2−4b2−6a+1