The correct option is
A |(x2−5x+6)|To find the square root of the given polynomial
x4−10x3+37x2−60x+36, we must equate it to the general form of equation that is
(ax2+bx+c) as shown below:
√x4−10x3+37x2−60x+36=ax2+bx+c⇒(√x4−10x3+37x2−60x+36)2=(ax2+bx+c)2⇒x4−10x3+37x2−60x+36=(ax2+bx+c)2⇒x4−10x3+37x2−60x+36=(ax2)2+(bx)2+(c)2+(2×ax2×bx)+(2×bx×c)+(2×c×ax2)(∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca)⇒x4−10x3+37x2−60x+36=a2x4+b2x2+c2+2abx3+2bcx+2acx2
Now, comparing the coefficients, we get:
a2=1,b2+2ac=37,c2=36,2ab=−10,2bc=−60
a2=1⇒a=1
c2=36⇒c=6
2ab=−10⇒2×1×b=−10⇒2b=−10⇒b=−5
Therefore, a=1,b=−5,c=6 and substituting the values in the equation (ax2+bx+c), we get x2−5x+6.
Hence, the square root of x4−10x3+37x2−60x+36 is ∣∣(x2−5x+6)∣∣.