wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the squares of the following numbers using column method. Verify the result by finding the square using the usual multiplication:
(i) 25
(ii) 37
(iii) 54
(iv) 71
(v) 96

Open in App
Solution


(i) Here, a = 2, b = 5
Step 1. Make 3 columns and write the values of a2, 2 x a x b, and b2 in these columns.
Column I Column II Column III
a2 2 x a x b b2
4 20 25

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).
Column I Column II Column III
a2 2 x a x b b2
4 20 + 2 25
22

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I.
Column I Column II Column III
a2 2 x a x b b2
4 + 2 20 + 2 25
6 22

Step 4. Underline the number in Column I.
Column I Column II Column III
a2 2 x a x b b2
4 + 2 20 + 2 25
6 22

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
252 = 625
Using multiplication:
25
25
125
50
625
This matches with the result obtained by the column method.

(ii) Here, a = 3, b = 7
Step 1. Make 3 columns and write the values of a2, 2 x a x b, and b2 in these columns.
Column I Column II Column III
a2 2 x a x b b2
9 42 49

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).
Column I Column II Column III
a2 2 x a x b b2
9 42 + 4 49
46

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I.
Column I Column II Column III
a2 2 x a x b b2
9 + 4 42 + 4 49
13 46

Step 4. Underline the number in Column I.
Column I Column II Column III
a2 2 x a x b b2
9 + 4 42 + 4 49
13 46

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
372 = 1369
Using multiplication:
37
37
259
111
1369
This matches with the result obtained using the column method.

(iii) Here, a = 5, b = 4
Step 1. Make 3 columns and write the values of a2, 2 x a x b and b2 in these columns.
Column I Column II Column III
a2 2 x a x b b2
25 40 16

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).
Column I Column II Column III
a2 2 x a x b b2
25 40 + 1 16
41

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I.
Column I Column II Column III
a2 2 x a x b b2
25 + 4 40 + 1 16
29 41

Step 4. Underline the number in Column I.
Column I Column II Column III
a2 2 x a x b b2
25 + 4 40 + 1 16
29 41

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
542 = 2916
Using multiplication:
54
54
216
270
2916
This matches with the result obtained using the column method.

(iv) Here, a = 7, b = 1
Step 1. Make 3 columns and write the values of a2, 2 x a x b and b2 in these columns.
Column I Column II Column III
a2 2 x a x b b2
49 14 1

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).
Column I Column II Column III
a2 2 x a x b b2
49 14 + 0 1
14

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I.
Column I Column II Column III
a2 2 x a x b b2
49 + 1 14 + 0 1
50 14

Step 4. Underline the number in Column I.
Column I Column II Column III
a2 2 x a x b b2
49 + 1 14 + 0 1
50 14

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
712 = 5041
Using multiplication:
71
71
71
497
5041
This matches with the result obtained using the column method.

(v) Here, a = 9, b = 6
Step 1. Make 3 columns and write the values of a2, 2 x a x b and b2 in these columns.
Column I Column II Column III
a2 2 x a x b b2
81 108 36

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).
Column I Column II Column III
a2 2 x a x b b2
81 108 + 3 36
111

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I.
Column I Column II Column III
a2 2 x a x b b2
81 + 11 108 + 3 36
92 111

Step 4. Underline the number in Column I.
Column I Column II Column III
a2 2 x a x b b2
81 + 11 108 + 3 36
92 111

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
962 = 9216
Using multiplication:
96
96
576
864
9216
This matches with the result obtained using the column method.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Squares of numbers between 25 and 75
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon