The correct option is B 1(1−x3)[x3−x3(n+1)−1+1x3n]+3(1−x)[x−xn+1−1+1xn]
S = (x+1x)3+(x2+1x2)3+...+(xn+1xn)3
Expanding the brackets and regrouping into 4 series gives
S =(x3+x6+⋯+x3n)+(1x3+1x6+⋯+1x3n)+3(x+x2+⋯+xn)+3(1x+1x2+⋯+1xn)
=x3(1+x3+x6+⋯+x3n−3)+1x3(1+1x3+1x6+⋯+1x3n−3)+3x(1+x+x2+⋯+xn−1)
+31x(1+1x+1x2+⋯+1xn−1)
=x3(1−x3n)1−x3+1x3⎛⎜
⎜
⎜
⎜⎝1−(1x3)n1−1x3⎞⎟
⎟
⎟
⎟⎠+3x(1−xn1−x)+3x⎛⎜
⎜
⎜⎝1−1xn1−1x⎞⎟
⎟
⎟⎠
∴S=1(1−x3)[x3−x3(n+1)−1+1x3n]+3(1−x)[x−xn+1−1+1xn]
Hence, option B.