Tn=(n2+5n+4)(n2+5n+8)=(n+1)(n+4){(n+2)(n+3)+2}
=(n+1)(n+2)(n+3)(n+4)+2(n2+5n+4)
Tn=15(n+1)(n+2)(n+3)(n+4){(n+5)−n}+2(n2+5n+4)
An=(n+1)(n+2)(n+3)(n+4)=15(n+1)(n+2)(n+3)(n+4){(n+4)−n}
An=15{(n+1)(n+2)(n+3)(n+4)(n+5)−n(n+1)(n+2)(n+3)(n+4)}
A1=15[2⋅3⋅4⋅5⋅6−1⋅2⋅3⋅4⋅5]
A2=15[3⋅4⋅5⋅6⋅7−2⋅3⋅4⋅5⋅6]
A3=15[4⋅5⋅6⋅7⋅8−3⋅4⋅5⋅6⋅7]
………………
………………
A3=15{(n+1)(n+2)(n+3)(n+4)(n+5)−n(n+1)(n+2)(n+3)(n+4)}
S1=A1+A2+A3+⋯+An=15(n+1)(n+2)(n+3)(n+4)(n+5)−24
Sn=S1+2n∑n=1n2+10n∑n=1n+8n
Sn=15(n+1)(n+2)(n+3)(n+4)(n+5)−24+13n(n+1)(2n+1)+5n(n+1)+8n
Sn=115(n+1)(n+2)(3n3+36n2+151n+240)−32