∫102−(k+1)xdx=[2−(k+1)x−(k+1)loga]10=2−(k+1)−1−(k+1)loga
∴n∑k=0(k+1).{2−(k+1)x−(k+1)loga}
=1logan∑k=0{1−12k+1}
=1loga[(n+1)−{12+122+123+...(n+1) terms}]
=1loga⎡⎢
⎢
⎢
⎢
⎢
⎢⎣(n+1)−12{1−(12)n+1}(1−12)⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
=1loga[(n+1)−(1−2−(n+1))]
=1loga[n+(12)n+1]
∴S=1loga∞∑n=0⎡⎢
⎢
⎢
⎢⎣nn!+12.(12)nn!⎤⎥
⎥
⎥
⎥⎦
=1loga∞∑n=0[1(n−1)!+12.xnn!],
where x=12
=1loga[e+12ex]=1loga(e+12√e)