Find the sum of the squares of the first n natural numbers.
n(n+1)(2n+1)6
Given series s=12+22+32+42+⋯+n2
We know,
n3−(n−1)3=3n2−3n+1
(n−1)3−(n−2)3=3((n−1)2−3(n−1)+1
(n−2)3−(n−3)3=3(n−2)2−3(n−2)+1
. .
. .
On adding both L.H.S and R.H.S, we get
n3=3∑ni=1n2−3∑ni=1n+n
n3=3∑ni=1n2−3(n)(n+1)2+n
n3=3∑ni=1n2−(3n2+3n)+2n2
n3=3∑ni=1n2−3n2−3n+2n2
n3=3∑ni=1n2−3n2+n2
3∑ni=1n2=(2n3+3n2+n)6=n(2n2+3n+1)6
= n(n+1)(2n+1)6