Find the value of 'a' satisfying the equation.
a) (42)a=(7a)2.
b) (2a)5=24×43
[4 MARKS]
Each option: 2 Marks
a) Given that,
(42)a=(7a)2
42a=72a [amn=amn]
Given, 42a=72a
Since 4≠7 the only case where the above equation is true is when both the exponents are zero.
⇒ a=0
⇒42a=72a=1 [∵40=1, 70=1]
b) The given equation is
(2a)5=24×43
⇒2a×5=24×(22)3
∵(am)n=am×n
⇒2a×5=24×(22×3)
⇒2a×5=24×(26)
⇒2a×5=24+6=210
∵am×an=am+n
Since their bases are same and they are equal, threfore their powers must be same,
So, 5×a=10
⇒a=105
⇒a=2
So, the value of a = 2.