(sin2x+cos2x)2−2sin2x.cos2x+sin2x+a=0
1−12sin22x+sin2x+a=0 or sin22x−2sin2x−2(1+a)=0
∴sin2x=2±√4+8(1+a)2=1±√2a+3 ...(1)
But sin2x is real so 2a+3≥0 i.e a≥−32
Also −1≤sin2x≤1
−1≤1±√2a+3≤1
As −1≤sin2x≤1
So −1≤1±√2a+3≤1
Also −1≤1−√2a+3≤1⇒0≤√2a+3≤2
⇒a∈[−32,12]
From (1) sin2x=1−√2a+3 where a∈[−32,12]
∴2x=nπ+(−1)nθ and sinθ=1−√2a+3
∴x=nπ2+(−1)nsin−1(1−√2a+3) where a∈[−32,12]