The correct option is D 1024243
First we need to simplify the exponents.
((81256)34)−53=(81256)34×(−53)
[∵(am)n=am×n]
=(3444)−54 (∵81=3×3×3×3=34and256=4×4×4×4=44)
=[(34)4]−54 (∵anbn=(ab)n)
=(34)4×(−54) [∵(am)n=am×n]
=(34)−5
=(43)5 [∵(ab)−n=(ba)n]
=4535 [∵(ab)n=anbn]
=4×4×4×4×43×3×3×3×3
⇒((81256)34)−53=1024243–––––––––––––––––––––––––––––
Hence, the value of ((81256)34)−53 is equal to 1024243.
Therefore, option (d.) is the correct answer.