C0+C1x2+C2x23+....+Cxxnn+1
(1+x)n=C0+C1x+C2x2f.....+Cnxn
fakiy dx & integrate both s 1 dx
∫(1+x)xdx=∫(a+ax+C2x2y...+Cnxx)dx
(1+x)n+1n+1=C0x+C1x22+C2x33+....+Cxxn+1n+1
(1+x)n+1(n+1)=c(C0+C1x2+C2x23+...+Cnxnn+1)
C0+C1x2+C2x23+...+Cxxnn+1=(1+x)n+1x(n+1)