wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of C0+C1X2+C2X23+...+CnXnn+1

Open in App
Solution

C0+C1x2+C2x23+....+Cxxnn+1
(1+x)n=C0+C1x+C2x2f.....+Cnxn
fakiy dx & integrate both s 1 dx
(1+x)xdx=(a+ax+C2x2y...+Cnxx)dx
(1+x)n+1n+1=C0x+C1x22+C2x33+....+Cxxn+1n+1
(1+x)n+1(n+1)=c(C0+C1x2+C2x23+...+Cnxnn+1)
C0+C1x2+C2x23+...+Cxxnn+1=(1+x)n+1x(n+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Remainder Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon