wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of : a2sin(BC)sinB+sinC+b2sin(CA)sinC+sin A+c2sin(AB)sin A+sin B

Open in App
Solution

From the properties of triangle.
a=ksinA
b=ksinB
c=ksinC
Substitute in the above equation.
k2sin2Asin(BC)(sinB+sinC)+k2sin2Bsin(CA)(sinC+sinA)+k2sin2Csin(AB)(sinA+sinB)...(i)
Hence the above equation can be written as,
k2sinAsin(B+C)sin(BC)(sinB+sinC)+k2sinBsin(C+A)sin(CA)(sinC+sinA)+k2sinCsin(A+B)sin(AB)(sinA+sinB)=k2sinA(sin2Bsin2C)(sinB+sinC)+k2sinB(sin2Csin2A)(sinC+sinA)+k2sinC(sin2Asin2B)(sinA+sinB)=k2(sinA(sinBsinC)+sinB(sinCsinA)+sinC(sinAsinB))=0



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon