wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of cosAsinA+1cosA+sinA1(cosecA+cotA)

Open in App
Solution

Now,
cosAsinA+1cosA+sinA1(cosecA+cotA)
=(cosAsinA+1)(cosA+sinA+1)(cosA+sinA)2(1)2(cosecA+cotA)
=(cosA+1)2(sin2A)2sinA.cosA(cosecA+cotA)
=(cos2A+2cosA+1)(sin2A)2sinA.cosA(cosecA+cotA) [ Since sin2A+cos2A=1]
=1+cos2A+2cosA2sinA.cosA(cosecA+cotA) [ Since cos2Asin2A=cos2A]
=2cos2A+2cosA2sinA.cosA(cosecA+cotA) [ Since 1+cos2A=2cos2A]
=cotA+cosecA(cotA+cosecA)
=0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon