We have,
x=aeθ(sinθ−cosθ) …….. (1)
y=aeθ(sinθ+cosθ) ……… (2)
On differentiating to equation (1) w.r.t θ, we get
dxdθ=a[eθ(sinθ−cosθ)+eθ(cosθ−(−sinθ))]
dxdθ=aeθ[(sinθ−cosθ)+(cosθ+sinθ)]
dxdθ=2aeθ(sinθ)
Similarly,
On differentiating to equation (2) w.r.t θ, we get
dydθ=a[eθ(sinθ+cosθ)+eθ(cosθ+(−sinθ))]
dydθ=aeθ[(sinθ+cosθ)+(cosθ−sinθ)]
dydθ=2aeθ(cosθ)
dydθdxdθ=2aeθ(cosθ)2aeθ(sinθ)
dydx=cotθ
Put θ=π4
So,
dydx∣∣∣θ=π4=cotπ4=1
Hence, the value is 1.