wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of dydx a θ=n4 , if x=aeθ(sinθcosθ) and y=aeθ(sinθcosθ)

Open in App
Solution

We have,

x=aeθ(sinθcosθ) …….. (1)

y=aeθ(sinθ+cosθ) ……… (2)

On differentiating to equation (1) w.r.t θ, we get

dxdθ=a[eθ(sinθcosθ)+eθ(cosθ(sinθ))]

dxdθ=aeθ[(sinθcosθ)+(cosθ+sinθ)]

dxdθ=2aeθ(sinθ)

Similarly,

On differentiating to equation (2) w.r.t θ, we get

dydθ=a[eθ(sinθ+cosθ)+eθ(cosθ+(sinθ))]

dydθ=aeθ[(sinθ+cosθ)+(cosθsinθ)]

dydθ=2aeθ(cosθ)

dydθdxdθ=2aeθ(cosθ)2aeθ(sinθ)

dydx=cotθ

Put θ=π4

So,

dydxθ=π4=cotπ4=1

Hence, the value is 1.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon