wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of cosπ11+cos3π11+cos5π11+cos7π11+cos9π11.

Open in App
Solution

Using cosα+cos(α+β)+...+cos(α+¯¯¯¯¯¯¯¯¯¯¯¯¯n1β)=sin(nβ2)sin(β2)cos(α+n12β)
cosπ11+cos3π11+cos5π11+cos7π11+cos9π11
=cosπ11+cos(π11+2π11)+...+cos(π11+4×2π11)
=sin(5×π11)sin(π11)cos(π11+2×2π11)
=2sin5π11cos5π112sin2π11=sin10π112sinπ11=12
(sin(180x)=sinxsin10π11=sinπ11)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon