Using cosα+cos(α+β)+...+cos(α+¯¯¯¯¯¯¯¯¯¯¯¯¯n−1β)=sin(nβ2)sin(β2)cos(α+n−12β)
cosπ11+cos3π11+cos5π11+cos7π11+cos9π11
=cosπ11+cos(π11+2π11)+...+cos(π11+4×2π11)
=sin(5×π11)sin(π11)cos(π11+2×2π11)
=2sin5π11cos5π112sin2π11=sin10π112sinπ11=12
(∵sin(180−x)=sinx⟹sin10π11=sinπ11)