wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of cosπ15.cos2π15.cos3π15.cos4π15.cos5π15.cos6π15.cos7π15.

Open in App
Solution

cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15
=12cosπ15cos2π15cos3π15cos4π15cos5π15cos(π8π15) (as cos 6π15=12)
=12cosπ15cos2π15cos3π15cos4π15cos5π15cos8π15
( as cos(πx)=cosx)

using trigonometric identities

=12sin(24π15)24sinπ15×122sin(223π15)sin3π15
=sinsin16π1516sinπ15×123sin(12π15)sin3π15
=127⎜ ⎜ ⎜ ⎜sin(π+π15)sinπ15⎟ ⎟ ⎟ ⎟×⎜ ⎜ ⎜ ⎜sin(π3π15)sin3π15⎟ ⎟ ⎟ ⎟=127

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon