wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of dydx at θ=π4,if x=aeθ(sin θcos θ) andy=aeθ(sin θ+cos θ).

Open in App
Solution

x=aeθ(sin θcos θ)

dxdθ=aeθ(sin θcos θ)+aeθ(sin θ+cos θ)

=2aeθsinθ
y=aeθ(sin θ+cos θ)

dydθ=aeθ(sin θ+cos θ)+aeθ(cos θsin θ)

=2aeθcosθ

dydx=dydθdxdθ=2aeθcosθ2aeθsinθ=cot θ

At x=π4,dydx=cotπ4=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon