Find the value of log7log7 (778)
A. 1+3log72
B. 3log27
C. 1−3log72
D. log73
The correct option is C(1−3log72)
Given log7log7 (7)78
Applying the rule of logam=mloga and also
logaa=1
Thus, log7log7 (7)78=log7(78)log77
= log7(78) (since, log77=1)
Since log(ab)=loga−logb
= log77−log78
= 1 - log723
= 1 - 3log72 (From above rule)