r=2(1+cosϕ+isinϕ1+cosϕ−isinϕ)n=r(cosnϕ+isinnϕ)
⇒[1+cosϕ+isinϕ)(1+cosϕ+isinϕ)(1+cosϕ−isinϕ)(1+cosϕ+isinϕ)]n=r(cosnϕ+isinnϕ)
⇒[(1+cosϕ)2−sin2ϕ+2i(1+cosϕ)sinϕ(1+cosϕ)2+sin2ϕ]n=r(cosnϕ+isinnϕ)
⇒[(1+cosϕ)2−(1−cos2ϕ)+2i(1+cosϕ)sinϕ1+1+2cosϕ]n=r(cosnϕ+isinnϕ)
⇒[(1+cosϕ)2−(1−cosϕ)(1+cosϕ)+2i(1+cosϕ)sinϕ2(1+cosϕ)]n=r(cosnϕ+isinnϕ)
⇒[(1+cosϕ)−(1−cosϕ)+2isinϕ2]n=r(cosnϕ+isinnϕ)
⇒[2cosϕ+2isinϕ2]n=r(cosnϕ+isinnϕ)
⇒[cosϕ+isinϕ]n=r(cosnϕ+isinnϕ)
use De' maywer theorem -
(cosϕ+isinϕ)n=cosnϕ+isinnϕ
So, (cosnϕ+isinnϕ)=r(cosnϕ+isinnϕ)
compare both sides
So, r=1