wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of r: (1+cosϕ+isinϕ1+cosϕisinϕ)n=r(cosnϕ+isinnϕ)

Open in App
Solution

r=2
(1+cosϕ+isinϕ1+cosϕisinϕ)n=r(cosnϕ+isinnϕ)
[1+cosϕ+isinϕ)(1+cosϕ+isinϕ)(1+cosϕisinϕ)(1+cosϕ+isinϕ)]n=r(cosnϕ+isinnϕ)
[(1+cosϕ)2sin2ϕ+2i(1+cosϕ)sinϕ(1+cosϕ)2+sin2ϕ]n=r(cosnϕ+isinnϕ)
[(1+cosϕ)2(1cos2ϕ)+2i(1+cosϕ)sinϕ1+1+2cosϕ]n=r(cosnϕ+isinnϕ)
[(1+cosϕ)2(1cosϕ)(1+cosϕ)+2i(1+cosϕ)sinϕ2(1+cosϕ)]n=r(cosnϕ+isinnϕ)
[(1+cosϕ)(1cosϕ)+2isinϕ2]n=r(cosnϕ+isinnϕ)
[2cosϕ+2isinϕ2]n=r(cosnϕ+isinnϕ)
[cosϕ+isinϕ]n=r(cosnϕ+isinnϕ)
use De' maywer theorem -
(cosϕ+isinϕ)n=cosnϕ+isinnϕ
So, (cosnϕ+isinnϕ)=r(cosnϕ+isinnϕ)
compare both sides
So, r=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon