2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Angle between Two Planes
Find the valu...
Question
Find the value of λ so that the following vectors are coplanar:
(i)
a
→
=
i
^
-
j
^
+
k
^
,
b
→
=
2
i
^
+
j
^
-
k
^
,
c
→
=
λ
i
^
-
j
^
+
λ
k
^
(ii)
a
→
=
2
i
^
-
j
^
+
k
^
,
b
→
=
i
^
+
2
j
^
-
3
k
^
,
c
→
=
λ
i
^
+
λ
j
^
+
5
k
^
(iii)
a
→
=
i
^
+
2
j
^
-
3
k
^
,
b
→
=
3
i
^
+
λ
j
^
+
k
^
,
c
→
=
i
^
+
2
j
^
+
2
k
^
(iv)
a
→
=
i
^
+
3
j
^
,
b
→
=
5
k
^
,
c
→
=
λ
i
^
-
j
^
Open in App
Solution
i
Given
:
a
→
=
i
^
-
j
^
+
k
^
b
→
=
2
i
^
+
j
^
-
k
^
c
→
=
λ
i
^
-
j
+
λ
k
^
We
know
that
vectors
a
→
,
b
→
,
c
→
are
coplanar
iff
a
→
b
→
c
→
=
0
.
It
is
given
that
a
→
,
b
→
,
c
→
are
coplanar
.
∴
a
→
b
→
c
→
=
0
⇒
1
-
1
1
2
1
-
1
λ
-
1
λ
=
0
⇒
1
λ
-
1
+
1
2
λ
+
λ
+
1
-
2
-
λ
=
0
⇒
λ
-
1
+
3
λ
-
2
-
λ
=
0
⇒
3
λ
-
3
=
0
⇒
λ
=
1
ii
Given
:
a
→
=
2
i
^
-
j
^
+
k
^
b
→
=
i
^
+
2
j
^
-
3
k
^
c
→
=
λ
i
^
+
λ
j
+
5
k
^
We
know
that
vectors
a
→
,
b
→
,
c
→
are
coplanar
iff
a
→
b
→
c
→
=
0
.
It
is
given
that
a
→
,
b
→
,
c
→
are
coplanar
.
∴
a
→
b
→
c
→
=
0
⇒
2
-
1
1
1
2
-
3
λ
λ
5
=
0
⇒
2
10
+
3
λ
+
1
5
+
3
λ
+
1
λ
-
2
λ
=
0
⇒
8
λ
+
25
=
0
⇒
λ
=
-
25
8
iii
Given
:
a
→
=
i
^
+
2
j
^
-
3
k
^
b
→
=
3
i
^
+
λ
j
^
+
k
^
c
→
=
i
^
+
2
j
^
+
2
k
^
We
know
that
vectors
a
→
,
b
→
,
c
→
are
coplanar
iff
a
→
b
→
c
→
=
0
.
It
is
given
that
a
→
,
b
→
,
c
→
are
coplanar
.
∴
a
→
b
→
c
→
=
0
⇒
1
2
-
3
3
λ
1
1
2
2
=
0
⇒
1
2
λ
-
2
-
2
6
-
1
-
3
6
-
λ
=
0
⇒
5
λ
-
30
=
0
⇒
λ
=
6
iv
Given
:
a
→
=
i
^
+
3
j
^
b
→
=
5
k
^
c
→
=
λ
i
^
-
j
^
We
know
that
vectors
a
→
,
b
→
,
c
→
are
coplanar
iff
a
→
b
→
c
→
=
0
.
It
is
given
that
a
→
,
b
→
,
c
→
are
coplanar
.
∴
a
→
b
→
c
→
=
0
⇒
1
3
0
0
0
5
λ
-
1
0
=
0
⇒
1
0
+
5
-
3
0
-
5
λ
+
0
0
-
0
=
0
⇒
5
+
15
λ
=
0
⇒
λ
=
-
1
3
Suggest Corrections
0
Similar questions
Q.
For what value of λ are the vectors
a
→
and
b
→
perpendicular to each other if
(i)
a
→
=
λ
i
^
+
2
j
^
+
k
^
and
b
→
=
4
i
^
-
9
j
^
+
2
k
^
(ii)
a
→
=
λ
i
^
+
2
j
^
+
k
^
and
b
→
=
5
i
^
-
9
j
^
+
2
k
^
(iii)
a
→
=
2
i
^
+
3
j
^
+
4
k
^
and
b
→
=
3
i
^
+
2
j
^
-
λ
k
^
(iv)
a
→
=
λ
i
^
+
3
j
^
+
2
k
^
and
b
→
=
i
^
-
j
^
+
3
k
^
Q.
a
=
2
i
−
j
+
k
,
b
=
i
+
2
j
−
3
k
,
c
=
3
i
+
λ
j
+
5
k
are coplanar. Then find the value of
λ
Q.
Find
a
→
b
→
c
→
, when
(i)
a
→
=
2
i
^
-
3
j
^
,
b
→
=
i
^
+
j
^
-
k
^
and
c
→
=
3
i
^
-
k
^
(ii)
a
→
=
i
^
-
2
j
^
+
3
k
^
,
b
→
=
2
i
^
+
j
^
-
k
^
and
c
→
=
j
^
+
k
^
(iii)
a
→
=
2
i
^
+
3
j
^
+
k
^
,
b
→
=
i
^
-
2
j
^
+
k
^
and
c
→
=
-
3
i
^
+
j
^
+
2
k
^
Q.
Show the each of the following triads of vectors are coplanar:
(i)
a
→
=
i
^
+
2
j
^
-
k
^
,
b
→
=
3
i
^
+
2
j
^
+
7
k
^
,
c
→
=
5
i
^
+
6
j
^
+
5
k
^
(ii)
a
→
=
-
4
i
^
-
6
j
^
-
2
k
^
,
b
→
=
-
i
^
+
4
j
^
+
3
k
^
,
c
→
=
-
8
i
^
-
j
^
+
3
k
^
(iii)
a
^
=
i
^
-
2
j
^
+
3
k
^
,
b
^
=
-
2
i
^
+
3
j
^
-
4
k
^
,
c
^
=
i
^
-
3
j
^
+
5
k
^
Q.
Prove that the following vectors are coplanar:
(i)
2
i
^
-
j
^
+
k
^
,
i
^
-
3
j
^
-
5
k
^
and
3
i
^
-
4
j
^
-
4
k
^
(ii)
i
^
+
j
^
+
k
^
,
2
i
^
+
3
j
^
-
k
^
and
-
i
^
-
2
j
^
+
2
k
^
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Perpendicular Bisector
MATHEMATICS
Watch in App
Explore more
Angle between Two Planes
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app