The correct option is C θ=nπ±π3,n∈Z
z=3+2isinθ1−2isinθ
Multiplying numerator and denominator by conjugate, we get
z=(3+2isinθ)(1+2isinθ)1+4sin2θ=3−4sin2θ+8isinθ1+4sin2θ
Now, z is purely real if sin θ=0 or θ=nπ,n∈Z.
z is puerly imaginary if 3−4sin2θ=0
or sinθ=±√32=±sinπ3
⟹θ=nπ±π3,n∈Z
Ans: C